A version of Hörmander’s theorem for the fractional Brownian motion
نویسندگان
چکیده
It is shown that the law of an SDE driven by fractional Brownian motion with Hurst parameter greater than 1/2 has a smooth density with respect to Lebesgue measure, provided that the driving vector fields satisfy Hörmander’s condition. The main new ingredient of the proof is an extension of Norris’ lemma to this situation.
منابع مشابه
Existence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملStochastic Differential Equations Driven by Fractional Brownian Motion and Standard Brownian Motion
We prove an existence and uniqueness theorem for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter H > 1/2 and a multidimensional standard Brownian motion. The proof relies on some a priori estimates, which are obtained using the methods of fractional integration, and the c...
متن کاملCentral limit theorem for an additive functional of the fractional Brownian motion II ∗
We prove a central limit theorem for an additive functional of the d-dimensional fractional Brownian motion with Hurst index H ∈ ( 1 d+2 , 1 d ), using the method of moments, extending the result by Papanicolaou, Stroock and Varadhan in the case of the standard Brownian motion.
متن کاملOn Gaussian Processes Equivalent in Law to Fractional Brownian Motion
We consider Gaussian processes that are equivalent in law to the fractional Brownian motion and their canonical representations. We prove a Hitsuda type representation theorem for the fractional Brownian motion with Hurst index H [ 2 . For the case H> 2 we show that such a representation cannot hold. We also consider briefly the connection between Hitsuda and Girsanov representations. Using the...
متن کامل